في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:
общая лексика
конечно-мерный
конечномерный
математика
бесконечномерный
In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.
For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say is finite-dimensional if the dimension of is finite, and infinite-dimensional if its dimension is infinite.
The dimension of the vector space over the field can be written as or as read "dimension of over ". When can be inferred from context, is typically written.